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Abstract
The CIECAM02 color-appearance model enjoys popularity in scientific research and
industrial applications since it was recommended by the CIE in 2002. However, it
has been found that computational failures can occur in certain cases such as during
the image processing of cross-media color reproduction applications. Some proposals
have been developed to repair the CIECAM02 model. However, all the proposals
developed have the same structure as the original CIECAM02 model and solve the
problems concerned at the expense of losing accuracy of predicted visual data com-
pared with the original model. In this article, the structure of the CIECAM02 model
is changed and the color and luminance adaptations to the illuminant are completed
in the same space rather than in two different spaces, as in the original CIECAM02
model. It has been found that the new model (named CAM16) not only overcomes
the previous problems, but also the performance in predicting the visual results is as
good as if not better than that of the original CIECAM02 model. Furthermore the
new CAM16 model is simpler than the original CIECAM02 model. In addition, if
considering only chromatic adaptation, a new transformation, CAT16, is proposed to
replace the previous CAT02 transformation. Finally, the new CAM16-UCS uniform
color space is proposed to replace the previous CAM02-UCS space. A new complete
solution for color-appearance prediction and color-difference evaluation can now be
offered.
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1 | INTRODUCTION

Ever since the recommendation of the CIECAM02 color-
appearance model by CIE TC 8-01 “Color appearance model-
ing for color management systems,” it has been used to predict
color appearance under a wide range of viewing conditions,1–3

to specify color appearance in terms of perceptual attributes,4,5

to quantify color differences,6 to propose a uniform color space
(UCS),7 and to provide a profile connection space for color
management.8–10 Some problems, however, were found with
the CIECAM02 model. For example, computational failures
can occur with applications in cross-media color image repro-
duction. In fact, this problem mainly comes from the lightness
computation:
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J5100 A=Awð Þcz: (1)

At this stage, we want to make it clear that all symbols
used in this article have the same meaning as in the original
CIE document.1 Li and Luo11 showed that Aw is positive for
all CIE illuminants. However, the achromatic signal A, hav-
ing the expression

A5 2R0
a1G0

a1ð1=20ÞB0
a20:305
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Nbb (2)

can be negative. Thus, raising the negative ratio in the
bracket of Equation 1 to the noninteger power cz, is not then
possible, which causes early termination of the computing
process.

The postadaptation cone signals R0
a, G0

a, and B0
a are

obtained from the input tristimulus values X, Y , and Z via
the illuminant color and luminance adaptations, which are
defined as follows:

1.1 | Illuminant color adaptation

Firstly, the input X, Y , and Z values are transformed to a
“sharp” sensor space, where the sensor response signals R,
G, and B are given by:
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Here, the matrix M02 is the built-in CAT02 matrix.1–3,12

The color adaptation is then completed using the transform:
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where the matrix K Dð Þ is the adaptation diagonal matrix:

KðDÞ5

D
Yw
Rw

112D

D
Yw
Gw

112D

D
Yw
Bw

112D

0
BBBBBBBB@

1
CCCCCCCCA
:

(5)

To complete the luminance adaptation, the adapted color
signals Rc; Gc; and Bc are transformed back to X, Y , and Z
space via the inverse transform:
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1.2 | Illuminant luminance adaptation

The XC, YC, and ZC tristimulus values of the corresponding
color given by Equation 6 are transformed to the Hunt-
Pointer-Estevez (HPE) cone space13,14 for final luminance
adaptation using the HPE matrix MHPE.

1–3 The HPE
cone response signals R0, G0, and B0 are given by the
transformation:
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Finally, the luminance adaptation is completed via a non-
linear transform15:

R
0
a5

signðR0Þ 400 FLjR0j=100ð Þ0:42
27:131 FLjR0j=100ð Þ0:42 10:1: (8)

for the red channel, with corresponding equations for the
green and blue channels.

Note that the derivative of the function defined by
Equation 8 approaches infinity as R0 approaches zero,
resulting in unstable behaviour in this area. Various
approaches16,17 have been made to replace Equation 8. This
article however, does not address this problem and Equation
8 is still used.

Note that Equations 3–6 are normally called the CAT02
transform and its full forward and inverse models have been
given in previous literature.18

It is clear that the negative value of the achromatic signal
A (Equation 2) comes from the two adaptation processes,
and hence they were considered as the sources of the
CIECAM02 problem. It is clear from Equations 2–8, that A
is nonnegative if the HPE cone response signals R0, G0, and
B0 satisfy:
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Several approaches have been made to change the
CAT02 matrix M so that the inequality (9) is satisfied. With
the new matrix M in Equation 9, we have a corresponding
new color appearance model and new chromatic adaptation
transform (CAT). Li et al.19 has pointed that if the matrix M
equals the matrix MHPE, the inequality in Equation 9 holds
for all colors with chromaticity coordinates located inside the
domain (named as XCIE) enclosed by the CIE spectrum locus
and the purple line. In addition, Li et al.20 defined another
matrix. named as MCAM, under the conditions: (a) the MCAM

matrix satisfies the inequality in Equation 9; and (b) with
the MCAM matrix the new CAM and new CAT fit the
color appearance datasets21–27 and corresponding color
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datasets21,28–33 as closely as possible. The accuracy of the pre-
dictions of the visual results using the MHPE and MCAM matri-
ces, however, became worse compared with that obtained
using the original CIECAM02 and CAT02 models.20

Brill and S€usstrunk34–36 also found that the CIECAM02
model exhibited the so-called “yellow-blue problem” and the
“purple problem,” and they devised a rule for correcting
them, which they called the nesting rule. If we let XM be the
chromaticity domain of all X, Y, and Z values giving non-
negative R, G, and B response signals with the transforma-
tion defined by the matrix M (see Equation 3), and similarly
for XHPE, then the nesting rule can be exactly stated as37:

XCIE � XM � XHPE: (10)

Brill and S€usstrunk reported that, with the original
CAT02 matrix, the above nesting rule is not satisfied, which
is the source of the CIECAM02 yellow-blue, and purple,
problems. They gave a partial solution by solving the
yellow-blue problem, but could not solve the purple prob-
lem. Recently, Li et al.38 found that there were many matri-
ces M that satisfied the nesting rule, and a special case was
the matrix M being equal to the HPE matrix MHPE, that is,
the two adaptations may use the same HPE matrix. Further-
more, Jiang et al.37 gave an optimum solution to the yellow-
blue and purple problems with the best matrix M, named
as MOPT, achieving the following results: (a) using the
matrix MOPT the nesting rule is satisfied; (b) predicting the
visual results,21–33 the CIECAM02 model with the matrix
MOPT has better accuracy than the CIECAM02 model using
any other matrix M satisfying the nesting rule. It was also
found37 that the CIECAM02 model with any of the
matrices M02, MCAM, MHPE, and MOPT has approximately
the same accuracy in predicting the LUTCHI and Juan and
Luo color appearance dataset.21–27 The predictions of the
corresponding color datasets21,28–33 by the CAT02 transform
(Equation 3) using different matrices were different however:
specifically, the matrices MCAM, MHPE, and MOPT provided
worse results than the original matrix M02.

In 2008, Gill17 also described an extension to the CIE-
CAM02 model, where some of the equations were changed
so that the modified version could avoid the mathematical
failure of CIECAM02. Gill however, made no comparisons
of predictions with visual data but the modified version
should at least have the same accuracy in predicting the vis-
ual datasets as the original CIECAM02 model. The modified
model was however, more complicated than the original.

All the above modifications to the CIECAM02 model
lead to a model that has the same structure as the original
model. Hence, the two adaptations are completed in different
spaces. However, all the above modifications to the CIE-
CAM02 model are either complicated or lose accuracy in
predicting the corresponding color datasets. Specifically, the

optimum solution found by Jiang et al.37 is the best proposal
we can achieve if we use the structure of the original
CIECAM02 model. This induced us to consider that perhaps
we must change the structure of the original CIECAM02
model to solve its problems and at the same time improve
the accuracy of the predictions for the current corresponding
color21,28–33 and color appearance datasets.21–27

We now propose that the two adaptations, luminance,
and color, be completed in the same space, and a new space
be transformed from X, Y, and Z space via a new matrix,
M16. As before, this matrix will be modelled as the optimum
solution to a constrained nonlinear optimization problem to
be solved numerically. The performance of a new CAT16
transform, (i.e., the old CAT02 transform with the new
matrix M16), the CAM16 model (i.e., the new structure of
the CIECAM02 model with the new matrix M16), and the
CAM16-UCS uniform color space (i.e., the uniform color
space based on the new CAM16 model) will be evaluated.

2 | THE NEW COLOR
APPEARANCE MODEL

As discussed above, the new model completes the two adap-
tations in the same space, and the new matrix M maps the X,
Y, and Z values to the new R, G, and B space. Firstly, one
can imagine from Equations 3–7 that, if the same matrix M
is used in lieu of both M02 and MHPE, we have:
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Hence, when the two adaptations are completed in the
same space, the first benefit is that the new model is more
simple than the original. Next, it follows from Equations 2,
5, 8, and 11 that, to let the achromatic signal A be
non-negative, the response signals R, G, and B should be
also non-negative, that is,
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for both the 28 and 108 observers since the diagonal matrix
K Dð Þ (Equation 5) is always non-negative. In addition, the
nesting rule (Equation 10) indicates that the matrix M must
be chosen to satisfy Equation 13.

XCIE � XM (13)

It can be further shown that these last two conditions
(Equations 12 and 13) are satisfied by the constraint defined
in Equation 14,
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where x kð Þ, y kð Þ, and z kð Þ are the CIE (1931 or 1964)
color-matching functions. Hence, if Equation 14 is satisfied,
the achromatic signal A can be shown to be non-negative,
resulting in proper values for the lightness J (Equation 1)
since AW is always positive.11

Let mij be the nine elements of the matrix M. Additional
constraints set the sum of the elements of each row to be
unity, that is,
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Usually, the reference white stimulus can be matched by
the mixture of one unit of all three primary colors in both the
RGB and XYZ color systems.39 These constraints were used
for deriving the CAT021–3,12,16 and the CMCCAT200040

matrices. The HPE matrix1–3 and the Bradford transform28,41

also satisfy Equation 15.
Furthermore, for each matrix M satisfying Equations 14

and 15, we have a modified CAT02 transform and a modi-
fied CIECAM02 model. In other words, the modified
CAT02 transform is the new matrix M replacing the CAT02
original matrix M02, while the modified CIECAM02 model
is simply the new structure of the CIECAM02 model with
the modified CAT02 transform rather than the original one.

Next, the matrix M was determined such that the modi-
fied CAT02 matrix best fits to the corresponding color data-
sets and the modified CIECAM02 model best fits to the
LUTCHI color appearance datasets.

The corresponding color datasets used here21,28–33 are
the seven color datasets accumulated by Luo and Hunt.22,41

Each dataset includes a number of corresponding colors
defined by pairs of X, Y, and Z tristimulus values giving the
same color appearance under two different illuminants, for
example D65 and A. Altogether, these seven datasets pro-
vide 21 subsets and 584 pairs of corresponding colors and
they provide the most reliable and comprehensive experi-
mental data now available. They were used to derive the
CAT02 matrix.1–3,12,18 The weighted mean CIELAB color
difference DE between the predictions of the modified
CAT02 transform and the experimental visual results was
used here as a measure of the performance of the modified
CAT02 matrix. The weighted mean was used because the
more color pairs in a dataset, the larger weight it will contrib-
ute: the sum of all weights is equal to unity. It is clear that
DE depends on the elements of the matrix M, and hence DE
can be abbreviated as DE Mð Þ.

The color appearance datasets are those accumulated at
the Loughborough University of Technology Computer-
Human Interface (LUTCHI) Research Centre21–25 and those
accumulated at the Color Imaging Institute of the University
of Derby.26,27 All these datasets were used to develop the
CIECAM02 model1,2 and to report on its performance.3 The
mean values of the Coefficient of Variation CV between the
modified CIECAM02 model predictions of correlated color
attributes (i.e., lightness, colorfulness, and hue composition)
and the experimental visual results were used as a measure
of the performance of the modified CIECAM02 model.
Therefore, if Pi is the model prediction, and Vi the experi-
mental visual result, the CV value22 can be defined as:

CV5100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i51
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s

=
1
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Xn
i51
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 !
: (16)

where n is the number of samples in the dataset in question.
If CV5 0, the agreement between the model predictions and
the experimental visual results is perfect. If CV5 20, there is
a 20% disagreement between the model predictions and the
experimental visual results. The lower the CV value, the bet-
ter the model performs. Let CV be the mean CV value for
all datasets considered here. Note that CV is a function of
the mij elements in matrix M, and hence it can be abbreviated
to CV Mð Þ. Note also that the CV value was used as a statis-
tic during the development and evaluation of the earlier CIE-
CAM97s model and the CIECAM02 model.1–3

From the above discussions, for final optimisation, an
objective function F Mð Þ was defined as

FðMÞ5w1DEðMÞ1w2CVðMÞ; (17)

where both w1 and w2 were set equal to 0.5 to give the same
load to visual results in corresponding color and color
appearance datasets and also, because it was found that this
combination of weights gave the best overall performance
[i.e., the minimum value of the function F Mð Þ].

The MATLAB routine fmincon was used to solve this
constrained nonlinear optimization problem, considering the
HPE matrix MHPE as the initial guess. Finally, the matrix
M16 was obtained numerically:

M165

0:401288 0:650173 20:051461

20:250268 1:204414 0:045854

20:002079 0:048952 0:953127

0
BB@

1
CCA: (18)

Thus, using M16 the two adaptations are made in only
one new space and we have a new modified CAT02 trans-
form (CAT16) and a new modified CIECAM02 model
(CAM16). The full procedure for CAM16 is given in Appen-
dix A.

In addition, the same equations used to extend the CIE-
CAM02 model to include the CAM02-UCS color space7
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were also applied to the CAM16 model to produce the
CAM16-UCS color space. In the next section, the
performance of these new models, CAM16, CAT16, and
CAM16-UCS, will be investigated.

3 | PERFORMANCE OF THE CAT16
TRANSFORM, THE CAM16 MODEL,
AND THE CAM16-UCS COLOR
SPACE

3.1 | Spectral responses

Spectral responses with each of the matrices M02, MHPE,
MOPT, and M16 in the red, green and blue channels are
plotted in Figures 1–3, respectively.

It can be seen from Figure 1 that, for the red spectral
channel, the shapes are all similar, but the peaks are at
slightly different positions. Specifically, relative to the peak

position for the response of the matrix MOPT, the matrix M02

peaks toward a longer wavelength while the matrices MHPE

and M16 peak towards shorter wavelengths. We can also
note that the matrix M02 has the highest/lowest spectral
responses at long/short wavelengths. The spectral responses
for the matrices MHPE and M16 behave similarly but in oppo-
site directions with respect to those of the matrix M02. The
spectral response curve of the matrix MOPT behaves in-
between the two extreme responses in the visible range. In
addition, all the responses were non-negative except at some
wavelengths for the matrix M02.

For the green spectral channel, it can be seen from Figure
2 that all responses have one peak at approximately the same
wavelength. However, the magnitudes of the responses are
different, the highest being for M02, followed by MOPT, M16,
and then MHPE. The spectral responses of the matrices M16

and MHPE are nearly identical. Again, the green channel
response curves are always non-negative, except for the
matrix M02.

Figure 3 shows that all blue response functions are simi-
lar, except around the peak at 450 nm and for wavelengths
around 550 nm. The spectral responses of the matrices MOPT

and MHPE were almost identical and they have the highest
peak response, while the spectral response of the matrix M16

has the lowest peak response. All the spectral responses for
the blue channel are non-negative.

Note that there is only one matrix, M02, for which the
red and the green spectral responses had some negative val-
ues. Hence it has been widely agreed that the CAT02 adapta-
tion should be carried out in a “sharp sensor” space.42

However, the spectral responses for the matrix MHPE are
always non-negative, and therefore they are considered as
cone-like responses.14 Since the spectral responses for the
matrix M16 (and the matrix MOPT) are similar to those of the
matrix MHPE, the spectral response space of the matrix M16

FIGURE 1 Spectral responses for the red channel with different
matrices

FIGURE 2 Spectral responses for the green channel with different
matrices

FIGURE 3 Spectral responses for the blue channel with different
matrices
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can also be considered as a “cone-like” space. Thus, it can
be concluded that adaptation using the CAT16 transform and
the two adaptations of the CAM16 model were completed in
a cone-like space.

3.2 | Predicting the corresponding color
datasets

Four CATs with different matrices were tested: the CAT02
transform with the original matrix M02, plus three analogous
transforms using the matrices MHPE, MOPT, and the new
matrix M16, respectively. We have employed the available
corresponding color datasets21,28–33 used to derive the origi-

nal matrix M02. Each corresponding color dataset includes a
different number of sample pairs. Each pair includes two sets
of X, Y, Z tristimulus values such that their corresponding
appearances match under the reference and test illuminants.
As mentioned before, the performance of each CAT02 trans-
form has been measured using the mean values of CIELAB
color differences between the X, Y, and Z values of the pre-
dicted corresponding colors and the experimental visual
results. The smaller the value of mean color difference, the
more accurately the transform performs. The results for each
individual dataset are listed in Table 1, including the test and
reference illuminants and the number of sample pairs. The
last two rows in Table 1 show the overall mean and the

TABLE 1 The performance of various CATs in terms of CIELAB color difference units

Dataset
Reference
Illuminant

Test
Illuminant

No. of Sample
Pairs M02 MHPE MOPT M16

CSAJ D65 A 87 4.0 5.5 5.0 4.3

Kuo D65 A 40 5.0 6.8 6.1 5.8

Kuo D65 TL84 41 3.5 4.9 4.7 3.8

Lam D65 A 58 4.4 6.2 5.6 4.9

Helson C A 59 4.9 6.0 5.6 5.2

LUTCHI D65 A 43 5.7 6.1 6.5 5.6

LUTCHI D65 D50 44 6.6 6.4 6.5 6.6

LUTCHI D65 WF 41 7.0 9.9 9.4 7.0

Breneman (1) D65 A 12 7.7 8.0 7.5 7.7

Breneman (2) D55 Projector 12 5.1 5.5 5.3 4.7

Breneman (3) D55 Projector 12 8.2 11.1 10.9 7.9

Breneman (4) D65 A 11 9.8 13.4 12.9 9.6

Breneman (6) D65 A 12 7.5 7.4 7.6 6.4

Breneman (8) D65 A 12 8.8 12.5 11.9 8.7

Breneman (9) D65 A 12 14.2 18.9 18.4 13.9

Breneman (11) Green D55 12 6.6 4.6 4.9 6.1

Breneman(12) Green D55 12 7.2 6.0 6.2 6.4

Braun & Fairchild (1) D65 D65 17 3.2 3.7 3.7 3.3

Braun & Fairchild (2) D65 D65 16 5.1 5.3 5.3 5.0

Braun & Fairchild (3) D65 D93 17 3.7 5.7 4.9 4.4

Braun & Fairchild (4) D65 A 14 3.8 4.1 3.9 4.0

Overall Mean 6.3 7.5 7.3 6.3

Weighted Mean 5.5 6.8 6.5 5.6

Values in plain/(bold) font in the last three columns indicate where the original CAT02 transform is/(is not) better than the CAT02 transform with the corresponding
matrices. The three values underlined indicate that the CAT02 and the CAT02 transform with the matrix M16 perform equally well.
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weighted mean CIELAB color differences considering all the
datasets. Note that in the last three columns of Table 1, the
numbers in plain/bold format mean the CAT02 transform
with corresponding matrices (indicated in the first row) per-
form worse/better than the original CAT02 transform for the
respective datasets and the numbers underlined in the last
column mean the CAT16 transform (the CAT02 transform
with matrix M16) and the original CAT02 transform per-
forms equally well for the datasets concerned.

It can be seen from Table 1 that the CAT02 transform
with the original matrix M02 performed the best with an
overall mean and weighted mean value of 6.3 and 5.5 CIE-
LAB units, respectively. This was to be expected since the
original matrix M02 was obtained by fitting these visual data-
sets.12 The second best result is provided by the CAT02
transform with the matrix M16, that is, the proposed CAT16
transform, with an overall mean of 6.3 CIELAB units, identi-
cal to the value found for the original CAT02 transform, and
a weighted mean value of 5.6 CIELAB units, which is only
0.1 CIELAB units higher than that found for the original
CAT02 transform. Thus, it can be concluded that the CAT02
and CAT16 transforms perform equally well for these corre-
sponding color datasets.21,28–33 Table 1 also shows that the
CAT02 transform with the matrix MOPT ranks third. The
worst case is the CAT02 transform with the matrix MHPE,
which is perhaps understandable since, amongst the four
matrices tested, only the matrix MHPE was not derived by
looking for a best fit of these visual datasets. However, when
deriving the matrix MOPT it was specifically intended to
satisfy the nesting rule, not for deriving the matrix M16

(although the de facto positivity of the spectral curves of the
M16 matrix implies that the chromaticity triangle of the M16

primaries contains the spectrum locus, as will be shown
below. Another difference is that the structure of the CIE-
CAM02 model was not changed when deriving the matrix
MOPT, but this was not true when deriving the matrix M16.
Hence, the structure of the model had an impact on the deri-
vation of the matrix in the CAT02 transform.

Note that for the 21 individual datasets shown in Table
1, the original CAT02 transform performed better than the
CAT02 transform with the HPE matrix MHPE for 17 of those
datasets. It can also be seen in Table 1 that the original
CAT02 transform performed better than the CAT02 trans-
form with the matrix MOPT for 17 of the 21 datasets. How-
ever, almost equal performance was found for the original
CAT02 and CAT16 transforms. Specifically, Table 1 shows
that the original CAT02 transform performed better/worse
than the CAT16 transform for 8/10 datasets, and these trans-
forms perform equally well for 3 datasets. Thus, it can be
concluded that the CAT16 and CAT02 transforms performed
equally well.

3.3 | The nesting rule

We already know that the source of the problem in the CIE-
CAM02 model is the original CAT02 matrix M02 which
does not satisfy the nesting rule,34–37 while the matrices
MHPE and MOPT solve the problem and satisfy this rule: it is
important that the matrix M16 should also satisfy the nesting
rule. The structure of the CAM16 model is different from
that of the original CIECAM02 model, and, under the new
structure, the nesting rule is defined by Equation 13 with the
matrix M set equal to the matrix M16. Figure 4 shows the
red, green and blue primaries (P23, P13; and P12) associated
with the matrix M16 in the CIE x,y chromaticity diagram,
and the corresponding triangle.37,38 In Figure 4, the red
response R (see Equation 12) is equal to zero on the red line
and greater than zero above the red line. Analogously, the
green response G is equal to zero on the green line connect-
ing the points P12 and P23 and positive above the green line.
Finally, the blue response B is equal to zero on the blue line
and positive below the blue line. Therefore, the positive
response region XM (with M5M16) is the open “quadrilat-
eral” region, which contains the domain XCIE enclosed by
the CIE spectrum locus and the purple line (the dotted black
line). Hence, the nesting rule is satisfied.

3.4 | Performance of the CAM16 model when
predicting the color appearance datasets

Using the LUTCHI color appearance datasets21–25 and those
data accumulated at the Color & Imaging Institute of the

FIGURE 4 Triangle associated to the CAT16matrixM16 in the CIE
x,y chromaticity diagram.37 The pointsP23, P13; and P12 are the red, green,
and blue primaries of the matrix, respectively. The dotted black line is the
CIE spectrum locus and purple line. Thus, the region enclosed by the spec-
trum locus and the purple line isXCIE in Equation 13. The non-negative
response regionXM withM5M16 for the CAT16matrix is the open poly-
gon, with one side open, which enclosesXCIE
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University of Derby,26,27 we have tested the accuracy of four
different color appearance models: the new CAM16 model
(i.e., the new structure of the CIECAM02 model with the
CAT16 transform given by the matrix M16), the original
CIECAM02 model, and the CIECAM02 model with the mat-
rices MHPE and MOPT; respectively. For assessing the fit to
the experimental data, we have employed the value of CV
(Equation 16), already used to test the performance of
previous color appearance models,22 including CIECAM02.3

The lower the CV value, the better the performance of the
model.

Tables 2–4 show CV values for the appearance attributes
lightness, colorfulness, and hue composition, respectively,
considering each one of the four color appearance models
tested and the eight appearance datasets. While Tables 2–4

do not show big differences among the predictions from the
four models, the CAM16 model performed at least as well as
the CIECAM02 model for the lightness attribute (Table 2),
and better than CIECAM02 model for the colorfulness
(Table 3) and the hue composition (Table 4) attributes.
Furthermore, Tables 2–4 show that the CAM16 and
CIECAM02 models outperformed the remaining two
models using the CIECAM02 structure with the MHPE and
MOPT matrices.

3.5 | Predicting the color-difference datasets

To test the performance of different UCSs, the same three
groups of color-difference datasets that were used to test the
CAM02-UCS space7 were used: small color differences
(SCD), large color differences (LCD), and an illuminant A
color-difference dataset (Table 5). The datasets in the first
two groups were all obtained under daylight simulators,
close to CIE illuminant D65. The SCD group has 3813 sam-
ple pairs with an average color difference of 2.0 CIELAB
units and includes the four datasets most extensively studied
in color-difference evaluation: RIT-DuPont,43 Leeds,44 BFD-
P,45 and Witt.46 The LCD group has 2953 pairs with an aver-
age color difference of 11.1 CIELAB units and includes 6
datasets: OSA,47 Munsell,48,49 Attridge, and Pointer50 (A &
P), Guan,51 Zhu,52 and Badu-Textile.53 The illuminant A
group includes only one dataset,54 BFDA, which was
obtained under CIE illuminant A, having 1053 pairs of
samples with an average color difference of 2.9 CIELAB
units.

In 2006, Luo et al.7 developed a uniform color space as
an extension of the CIECAM02 color appearance model and
made comprehensive comparisons with available UCSs and
formulae using the three groups of datasets. It was found that
the CAM02-UCS space performed well, and here, only the

TABLE 2 CV values for the lightness attribute in eight color
appearance datasets considering the predictions made by the
CIECAM02 model with three different CAT02 matrices (columns 2–4)
and the CAM16 model (last column)

Group M02 MHPE MOPT M16

RHL 10.6 10.9 10.9 10.7

RLL 11.4 11.7 11.6 11.5

RVL 13.3 13.5 13.5 13.3

RTE 14.8 14.8 14.8 14.8

CRT 11.6 11.7 11.7 11.6

M35 19.3 20.0 20.0 19.7

LTX 16.5 16.6 16.6 16.5

JUA 14.2 14.2 14.2 14.1

Mean 14.0 14.2 14.2 14.0

TABLE 3 Idem to Table 2, but for the colorfulness attribute

Group M02 MHPE MOPT M16

RHL 17.8 17.9 17.9 17.2

RLL 18.6 18.8 18.7 17.3

RVL 18.4 18.9 18.9 18.5

RTE 23.7 24.8 24.2 21.8

CRT 19.6 19.5 19.1 19.8

M35 16.1 16.2 16.2 16.9

LTX 14.2 14.4 14.4 15.1

JUA 20.3 20.2 20.3 19.3

Mean 18.6 18.9 18.7 18.2

TABLE 4 Idem to Table 2, but for the hue composition attribute

Group M02 MHPE MOPT M16

RHL 6.9 6.9 6.8 6.4

RLL 7.1 7.2 7.0 6.7

RVL 6.5 6.5 6.5 6.7

RTE 7.1 7.1 6.9 6.9

CRT 6.7 7.6 7.4 6.6

M35 7.2 7.5 7.5 7.9

LTX 5.8 5.6 5.6 5.4

JUA 7.6 7.5 7.5 6.5

Mean 6.9 7.0 6.9 6.6
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performance of the CIECAM02, CAM16, CAM02-UCS,
and CAT16-UCS uniform color spaces are tested, and
results presented in terms of the mean STRESS values55

are listed in Table 5. The same equations as used in the
CAM02-UCS space are used for extending CAM16 to
derive the CAM16-UCS space. Furthermore, the power
function:

DE51:41 DE
0

� �0:63
(19)

developed by Huang et al.56 is applied to the color-
difference metric associated with CAM16-UCS and the
results are listed in the last column of Table 5. DE

0
is the

color difference in terms of the J0, aM’, and bM’ coordi-
nates7 in CAM16-UCS space.

The results in Table 5 show that for the SCD group,
CAM16/CAM16-UCS are slightly better than CIECAM02/
CAM02-UCS for each of the datasets in this group. For the
LCD group, CIECAM02 performs better for two datasets,
worse for three datasets and equally well for one the dataset.
Overall, it can be said that CAM16 is slightly better than
CIECAM02 for the LCD group. Comparing CAM02-UCS
and CAM16-UCS in the LCD group, we note that CAM02-
UCS performs better for three datasets and worse for three
datasets, and overall CAM16-UCS is slightly better than
CAM02-UCS by 0.2 STRESS units. Finally, for the illumi-
nant A dataset, CAM16/CAM16-UCS performs better than

CIECAM02/CAM02-UCS. These results are encouraging
since the models CAM16/CAM16-UCS were not developed
from these three groups of datasets. Overall, Table 5 shows
that CAM16-UCS gave similar or better performance than
CAM02-UCS. Therefore, it can be applied for all color-
difference evaluation with confidence. Results in the last col-
umn of Table 5 also show that the color-difference metric
associated with CAM16-UCS can be further improved by
the use of the power correction function, Equation 19 pro-
posed by Huang et al.56

3.6 | The use of the CAT16 CAT

It should be noted that, in the derivation of the CAT and in
the methods used to obtain the corresponding color datasets
listed in Table 1, the CAT always directly links a test illumi-
nant to a reference illuminant. The reference illuminant is
normally close to daylight (often illuminant D65). The (for-
ward) CAT16 transform can in general be summarized as a
one-step CAT defined by a 3 by 3 mapping matrix, Ur;t

given by:

Ur;t5M21
16 Kr;tM16 (20)

where the subscripts r and t represent information under the
reference and test illuminants, respectively. The diagonal
adaptation matrix Kr;t is defined by

TABLE 5 STRESS results for different color difference datasets43–54 together with the mean values for the three groups SCD, LCD, and A

Group Dataset
No. of
pairs Mean DE CIECAM02 CAM02-UCS CAM16 CAM16-UCS

CAM16-UCS with
power correction

RIT-DuPont 312 1.44 30.6 19.9 28.9 19.8 12.4

SCD Leeds 307 1.63 40.0 25.3 38.7 24.5 20.8

BFD 2776 3.00 39.0 31.1 38.8 30.9 30.8

WITT 418 1.87 44.5 31.9 43.8 31.5 30.6

Mean 2.00 38.5 27.1 37.6 26.7 23.6

OSA 127 14.3 20.4 19.4 20.4 19.0 17.2

Munsell 844 10.1 20.8 28.0 20.4 28.7 21.0

A&P 1308 8.90 30.4 30.3 31 31.0 26.1

LCD GUAN 292 11.4 25.6 18.6 24.8 17.2 13.1

ZHU 144 9.9 27.3 25.9 28.2 26.7 16.6

BADU-T 238 11.8 26.7 18.6 25.2 17.1 18.7

Mean 11.1 25.2 23.5 25.0 23.3 18.8

A BFDA 1053 2.9 37.7 31.3 35.2 29.9 25.9

Results under the power correction column were obtained with the power correction applied to the Euclidean color difference in CAM16-UCS space.
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Kr;t5

D � Yw
Ywr

� Rwr

Rw
112D 0 0

0 D � Yw
Ywr

� Gwr

Gw
112D 0

0 0 D � Yw
Ywr

� Bwr

Bw
112D

0
BBBBBBB@

1
CCCCCCCA

(21)

Which, when Yw5Ywr5100, reduces to KðDÞ as given in
Equation 5. The factor Yw=Ywr was first introduced by Li
et al.40 and its justification was given by Hunt et al.57 Thus,
the (forward) CAT16 or one-step CAT Ur;t maps the X, Y,
and Z tristimulus values under the test illuminant to X, Y, and
Z tristimulus values under the reference illuminant.
The inverse of the CAT16 transform can also be defined by
a 3 by 3 matrix, Wt;r defined by:

Wt;r5U21
r;t 5ðM21

16 Kr;tM16Þ215M21
16 ðKr;tÞ21M16 (22)

Hence, Wt;r, the inverse of the CAT16 transform, maps
the X, Y, and Z tristimulus values under the reference illumi-
nant to the X, Y, and Z tristimulus values under the test illu-
minant. Proceeding with a direct transformation between
reference and test illuminants can be called the one-step
adaptation method.

Because of the form of Equation 20, the one-step method
has the problem that a forward transformation from test to
reference illuminant, followed by a forward transformation
from reference to test illuminant, is not an identity transfor-
mation (except in certain special cases such as when D5 1),
that is, the final transformed X, Y, and Z tristimulus values
are not equal to the original input X, Y, and Z tristimulus val-
ues. More generally, the one-step method is not transitive:
transformation from A to B, followed by transformation
from B to C, is not the same as transformation from A to C.

An alternative two-step method does not have this prob-
lem. In the two-step method, a forward transformation from
test X, Y, and Z values to an agreed-upon intermediate state
(for example, the equal-energy illuminant, SE) can be
performed followed by a reverse transformation from the
intermediate state to the reference X, Y, and Z values. It can
be shown that applying the two-step method from test to
reference X, Y, and Z values, and then another two-step
transformation from reference to test X, Y, and Z values
(same formula, but with r and t interchanged) will produce
an identity, as required. The more general transitivity prop-
erty is also maintained by the two-step method.

Thus the procedure for the two step method is as follows.
First, use Use;t to map the X, Y, Z values under the test illu-
minant to Xse, Yse, Zse under the intermediate equal-energy
illuminant SE; then use Wr;se to map Xse, Yse, and Zse to X, Y,
and Z values under the reference illuminant. Thus, the

CAT16 transform working in this manner can be considered
as a two-step transform, which again can be defined by a 3
by 3 matrix Pr;t and this matrix is the product of the matrix
Wr;se and the matrix Use;t, that is

Pr;t5Wr;se �Use;t

5M21
16 ðKse;rÞ21M16 �M21

16 Kse;tM16

5M21
16 ðKse;rÞ21Kse;tM16

(23)

In addition, Pr;t can also be defined by:

Pr;t5Ur;se �Use;t

5M21
16 Kr;seM16 �M21

16 Kse;tM16

5M21
16 Kr;seKse;tM16

(24)

Two candidate methods that can be used to implement
the CAT16 transform have been described in this article. An
initial investigation has shown that the differences in predict-
ing the visual datasets using the one-step and the two-step
CATs are negligible and the results of this analysis will be
described in a future paper.58

Finally, it should be emphasized that, up to now, in prac-
tical applications such as in predicting color inconstancy,59,60

the shorter one-step method (as in the present article) has
been widely used, and the consequences of the inconsisten-
cies have been small. However, it might be better if we were
to use the two-step CAT to achieve the transitive property
and to be consistent with the CIECAM02 model.

4 | CONCLUSIONS

In this article, we first analyzed various methods to solve the
problems of the CIECAM02 color appearance model, which
led to the proposal of either the MHPE or MOPT matrices to
replace the original CAT02 matrix, keeping the same struc-
ture as the original CIECAM02 model. It was subsequently
found that both matrices failed because they focused on solv-
ing the mathematical problem in the CIECAM02 model at
the expense of losing accuracy in the prediction of the results
from visual experiments. We concluded that it was necessary
to change the original CIECAM02 model structure. In this
paper, the chromatic and luminance adaptations were com-
bined to take place in a new “cone-like” space. A new matrix
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M was found to satisfy the constraints set by Equations 14
and 15 and, at the same time, the new model accurately pre-
dicted the corresponding color and color-appearance data-
sets. This resulted in a new CAT named CAT16 and a new
color appearance model named CAM16. Further evaluation
showed that the CAT16 and CAT02 transforms performed
equally well to predict the corresponding color datasets.
Most importantly, the CAT16 matrix satisfies the nesting
rule while the CAT02 matrix does not. When predicting the
color appearance datasets, the CAM16 and CIECAM02
models performed equally well in predicting the lightness
data, but the CAM16 model performed better than the CIE-
CAM02 model in predicting the colorfulness and hue com-
position data. Furthermore, a new uniform color space,
CAM16-UCS, was developed based on the CAM16 model.
This space was tested using three groups of color-difference
datasets, with small magnitude, large magnitude and illumi-
nant A differences, respectively. The CAM16-UCS space
predicts these color-difference datasets results at least equal
to or better than the CAM02-UCS space. The CAM16-UCS
color-difference formula can be further improved by a power
correction to the Euclidean color difference.

In summary, according to our results, the CAM16/
CAT16/CAM16-UCS model should be considered as a good
candidate to replace the current CIECAM02/CAT02/
CAM02-UCS model.
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APPENDIX A

COLOR APPEARANCE MODEL
CAM16

Part 1: Forward CAM16 model

Input: X, Y , Z (under test illuminant Xw, Yw, and Zw)
Output: Correlates of lightness J, chroma C, hue compo-

sition H, hue angle h, colorfulness M, saturation s, and bright-
ness Q

Illuminants, viewing surrounds set up and background
parameters

(See the note at the end of Part 2 of Appendix B for deter-
mining all parameters)

Adopted white in test illuminant: Xw, Yw, Zw
Background in test conditions: Yb
Reference white in reference illuminant:

Xwr5 Ywr5 Zwr5100, fixed in the model
Luminance of test adapting field (cd/m2): LA
Surround parameters are given in next Table A1:
To determine the surround conditions see the note at the

end of Part 1 of Appendix A.
Nc and F are modelled as a function of c, and their values

can be linearly interpolated (see Figure A1), using the above
points

Step 0: Calculate all values/parameters which are inde-
pendent of the input sample
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If D is greater than one or less than zero, set it to one or
zero, respectively.
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Note that all parameters computed in this step are needed
for the following calculations. However, because they depend
only on surround and viewing conditions, when processing
pixels of an image they are computed only once. The next
computing steps are sample (pixel) dependant.

Step 1: Calculate ‘cone’ responses
R

G

B

0
BB@

1
CCA5M16 �

X

Y

Z

0
BB@

1
CCA

Step 2: Complete the color adaptation of the illuminant in
the corresponding cone response space (considering various
luminance levels and surround conditions included in D, and
hence in DR, DG, and DB)

Rc

Gc

Bc

0
BB@

1
CCA5

DR � R
DG � G
DB � B

0
BB@

1
CCA

TABLE A1 Surround parameters

F c Nc

Average 1.0 0.69 1.0

Dim 0.9 0.59 0.9

Dark 0.8 0.525 0.8
FIGURE A1 Linear interpolation to obtainNc and F
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Step 3: Calculate the postadaptation cone response
(resulting in dynamic range compression)

Ra5400 �
FL�Rc
100

� �0:42
FL�Rc
100

� �0:42
127:13

0
B@

1
CA10:1

If Rc is negative, then

Ra52400 �
2FL�Rc
100

� �0:42
2FL�Rc
100

� �0:42
127:13

0
B@

1
CA10:1;

and similarly for the computations of Ga and Ba.
Step 4: Calculate Redness – Greenness (a), Yellowness –

Blueness (b) components, and hue angle (h):

a5Ra2
12 � Ga

11
1

Ba

11

b5
ðRa1Ga22 � BaÞ

9

h5tan21 b
a

� �

(make sure h is between 08 and 3608)
Step 5: Calculate eccentricity [et, hue quadrature compo-

sition (H) and hue composition (Hc)]
Using the following unique hue data in Table A2, set

h’5h1 360 if h < h1, otherwise h
0
5h. Choose a proper i

(i51,2,3, or 4) so that hi � h
0
< hi11. Calculate

et5
1
4
� cos

h0 � p
180

12
� �

13:8
	 


which is close to, but not exactly the same as, the eccentricity
factor given in Table A2.

Hue Quadrature H is computed using the formula:

H5Hi1
100 � h02hi

ei
h02hi
ei

1 hi112h0
ei11

and hue composition Hc is computed according to H. If i5 3
and H5 241.2116 for example, then H is between H3 and H4

(see Table A2 above). Compute PL5H4–H5 58.7884;
PR5H – H3541.2116 and round PL and PR values to
integers 59 and 41. Thus, according to Table A2, this sample

is considered as having 59% of Green and 41% of Blue,
which is the Hc and can be reported as 59G41B or 41B59G.

Step 6: Calculate achromatic response A

A5½2 � Ra1Ga1
Ba

20
20:305� � Nbb

Step 7: Calculate the correlate of lightness J

J5100 � ð A
Aw

Þc�z

Step 8: Calculate the correlate of brightness Q

Q5
4
c

� �
� J

100

� �0:5

� ðAw14Þ � F0:25
L

Step 9: Calculate the correlates of chroma (C), colorful-
ness (M), and saturation (s)

t5
50;000
13 � Nc � Ncb

� � � et � a21b2ð Þ1=2
Ra1Ga1ð2120Þ � Ba

C5t0:9 � J
100

� �0:5

� ð1:6420:29nÞ0:73

M5C � F0:25
L

s5100 � M
Q

� �0:5

Part 2: The Inverse CAM16 model.
Input: J or Q; C, M, or s; H or h
Output: X, Y , Z (under test illuminant Xw, Yw, Zw)

Illuminants, viewing surrounds, and background parame-
ters are the same as those given in the forward model. See
notes at the end of Part 2 of current Appendix A for calculat-
ing/defining the luminance of the adapting field and surround
conditions.

Step 0: Calculate viewing parameters
Compute FL, n, z, Nbb5Nbc, Rw, Gw, Bw, D, DR,

DG, DB, Rwc, Gwc, Bwc, Raw, Gaw, Baw, and Aw using the
same formulae in Step 0 of the Forward model. Note that all
data computed in this step can be used for all samples (for
example all pixels in an image) under the viewing conditions.
Hence, they are computed only once. The following comput-
ing steps are sample dependent.

Step 1: Obtain J, C; and h from H, Q, M, s
The input data can be different combinations of perceived

correlates, that is, J or Q; C, M, or s; and H or h. Hence the
following sub-steps are needed to convert the input parame-
ters to the parameters J, C, and h.

Step 1-1: Compute J from Q (if input is Q)

J56:25 � c � Q
ðAw14Þ � F0:25

L

	 
2

Step 1-2: Calculate C from M or s

TABLE A2 Unique hue data for calculation of hue quadrature

Red Yellow Green Blue Red

i 1 2 3 4 5

hi 20.14 90.00 164.25 237.53 380.14

ei 0.8 0.7 1.0 1.2 0.8

Hi 0.0 100.0 200.0 300.0 400.0
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C5
M

F0:25
L

ðif input isMÞ

Q 5
4
c

� �
� J

100

� �0:5

� Aw 14:0ð Þ � F0:25
L

and C5ð s
100Þ2 � ð Q

F0:25
L
Þ (if input is s)

Step 1-3: Calculate h from H (if input is H)
The correlate of hue (h) can be computed by using data in

Table A2 in the Forward model.
Choose a proper i (i 51, 2, 3, or 4) so that

Hi � H < Hi11.

h05
ðH2HiÞ � ðei11hi2ei � hi11Þ2100 � hi � ei11

ðH2HiÞ � ðei112eiÞ2100 � ei11

Set h5h
0
2360 if h

0
> 360, otherwise h5h0.

Step 2: Calculate t, et, A, p1, p2, and p3

t5½ Cffiffiffiffiffiffi
J

100

q
� ð1:6420:29nÞ0:73

� 1
0:9

et5
1
4
� cos h � p

180
12

� �
13:8

h i

A5Aw � J
100

� � 1
c�z

p15
50; 000
13

� Nc � Ncb

� �
� et � 1

t

� �
; if t 6¼ 0

p25
A
Nbb

10:305

p35
21
20

Step 3: Calculate a and b
If t50, then a5b50 and go to Step 4
In next computations be transform h from degrees to radi-

ans before calculating sin hð Þ and cos hð Þ:
If jsin hð Þj � jcos hð Þj then

p45
p1

sin ðhÞ

b5
p2 � 21p3ð Þ � 460

1403

� �

p41ð21p3Þ � 220
1403

� �
� cos hð Þ

sin hð Þ
� �

2
27

1403

� �
1p3 � 6300

1403

� �

a5b � cos ðhÞ
sin ðhÞ

� �

If jcos hð Þj>jsin hð Þj, then
p55

p1
cos ðhÞ

a5
p2 � 21p3ð Þ � 460

1403

� �

p51ð21p3Þ � 220
1403

� �
2

27
1403

� �
2p3 � 6300

1403

� �	 

� sin ðhÞ

cos ðhÞ
� �

b5a � sin ðhÞ
cos ðhÞ
� �

Step 4: Calculate Ra, Ga, and Ba

Ra 5
460
1403

� p21 451
1403

� a1 288
1403

� b

Ga 5
460
1403

� p22 891
1403

� a2 261
1403

� b

Ba 5
460
1403

� p22 220
1403

� a2 6300
1403

� b

Step 5: Calculate Rc, Gc; and Bc

Rc5signðRa20:1Þ � 100
FL

� 27:13 � jRa20:1j
4002jRa20:1j

	 
 1
0:42

Here, signðxÞ5
1 if x>0

0 if x50

21 if x<0

8>><
>>: , and similarly

computing Gc, and Bc from Ga, and Ba.
Step 6: Calculate R, G, and B from Rc, Gc, and Bc

R

G

B

0
BB@

1
CCA5

Rc

DR

Gc

DG

Bc

DB

0
BBBBBBB@

1
CCCCCCCA

Step 7: Calculate X, Y, and Z (for the coefficients
of the inverse matrix, see the note at the end of the
appendix B)

X

Y

Z

0
BB@

1
CCA5M21

16 �
R

G

B

0
BB@

1
CCA

Notes to Appendices A

1. It is recommended to use the matrix coefficients given
below for the inverse matrix

M21
16 5

1:86206786 21:01125463 0:14918677

0:38752654 0:62144744 20:00897398

20:01584150 20:03412294 1:04996444

0
BB@

1
CCA

2. The LA is computed using Equation A1

LA5
EW

p

� �
� Yb

YW

� �
5

LW � Yb
YW

; (A1)

where Ew5pLw is the illuminance of reference white in lux;
Lw is the luminance of reference white in cd/m2, Yb is the
luminance factor of the background, and Yw is the luminance
factor of the reference white.
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3. Surround conditions (average, dim, and dark) are deter-
mined by the surround ratio SR given by Equation A2:

SR5
LSW
LDW

(A2)

where LSW is the luminance of the reference white measured in
the surround field and LDW is the luminance of the reference
white measured in the display area. If SR is 0, then the surround
condition is “dark”; if 0 < SR < 0:2, then the surround is
“dim”; and if SR � 0:2, then the surround is “average.”

APPENDIX B

UNIFORM COLOR SPACE:
CAM16-UCS

Let the J, M; and h be lightness, colorfulness, and hue angle,
respectively, computed using the CAM16 model. The UCS
based on CAM16 is given by next Equations:

J 05
1:7J

110:007J
M05ln ð110:0228MÞ=0:0228

a05M0cos ðhÞ
b05M0sin ðhÞ

h05h

(A3)

The J 0; a0; and b0 coordinates define the approximately
uniformity color space associated to the CAM16 model,
shortened as CAM16-UCS. The color difference between two
samples can be computed as the Euclidean distance between
them in CAM16-UCS:

DE05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DJ 021Da021Db02

p
(A4)

where the DJ 0; Da
0
; and Db0 are the J

0
; a0; and b0 differen-

ces between the pair of samples, respectively.

DE51:41 DE
0

� �0:63
(A5)
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